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Multiobjective Optimization

 Simulation-based optimization

 Multidisciplinary design attempts to satisfy multiple, possibly

conflicting, objectives at once

 Blackbox simulations: 𝑓𝑖 not known

 No partial derivatives, no constraints, no relationships…

𝑀𝑂𝑃 min𝐹 𝑥 = (𝑓1 𝑥 , 𝑓2 𝑥 ,… , 𝑓𝑝 𝑥 )
𝑥 ∈ 𝑋
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Motivation: Blackbox Simulations

 Engineers can not describe the relationships which are used to

formulate a mathematical problem (e.g. differential equations)

 Finding a tradeoff set of input parameters which satisfy all 

simulation goals

 Application in simulation-based feasibility studies

 Our use case scenario: Autonomous spacecraft operations for small

planetary objects
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Simulation goals

Parameters Satisfaction of

goal states

𝑀𝑂𝑃 min𝐹 𝑥 = (𝑓1 𝑥 , 𝑓2 𝑥 , … , 𝑓𝑝 𝑥 )
𝑥 ∈ 𝑋

𝑓𝑖 𝑛𝑜𝑡 𝑘𝑛𝑜𝑤𝑛



Motivation: Autonomous Spaceflight Example

 Propulsion type ⇒ Orbit transfer ⇒ Planetary visibility ⇒ Self-localization

⇒ Ground station communication ⇒ Bandwidth ⇒ Antenna diameter
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The Knowledge Discovery Process

 Main idea: Use simulation itself to generate data in order to

simulate, optimize or analyze the given model

 Making sense of huge data collections

 Semi-automatic five step process

 Requires several iterations of some steps

 Collection of data mining techniques
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KD Processes in Simulations

 Single objective optimization

 Landscape characterization problem exploration via support vector machines

[Burl‘06]

 Determination of adaptation strategies for linear relationships [Lattner‘11]

 Linear regression of input parameters and classification [Painter‘06]

 Multi objective optimization

 Analysis of existing Pareto solutions

[Bandaru‘10,Sugimura‘07,Liebscher‘09,Dudas‘15]
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Remaining Challenges

1. Multiobjective optimization

 Approximation of the feasible design space

2. Blackbox simulation

 Determination of relationships between input parameters and

simulation goals
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Features

1. Reduce amount of simulation data farming

2. Completely autonomous knowledge discovery process

 Remove manual assessment of knowledge discovery results
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Our Approach

 Completely autonomous knowledge discovery process

 Uncovers hidden relationships between simulation input parameters

and simulation goals with few samples from the simulation

 Approximates feasible design space

 Approximates Pareto gradient information for multiobjective algorithms

Relationship

Analysis

Simulation

Design Space

Approximation

Pareto Gradient

Approximation

Optimization algorithms

Simulation 

parameters

Goals
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Goal

 Approximate objective function 𝑓 and determine their input

(𝑥𝑖 , … , 𝑥𝑘)

 Complexity of simulation data farming

 Brute-force approach is too computationally expensive

 Our two phase approach reduces the farming operations

 Forest-based association rule analysis determines

 Spline-based sampling approximates

𝑓𝑗 𝑥𝑖 , … , 𝑥𝑘 → 𝐺𝑛

𝑂 (𝑝2−𝑝 ⋅ 𝑚)
𝑚 ∶ #𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑔𝑜𝑎𝑙𝑠

𝑝 ∶ #𝑖𝑛𝑝𝑢𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

𝑥𝑖 , … , 𝑥𝑘
𝑓𝑗
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Association Rule Mining

 Requires centralized data management which records

transactions of all software modules (e.g. GraphPool)

 Outputs list of association rules

 Association rule implies workflow from𝑋 to 𝑌

 Example: 

ARM

Simulation

Transactions

Simulation 

dataflow & 

workflow Rules Forest

Analysis

Module A: X ⇒ 𝑌 𝑋 ∩ 𝑌 = 0 𝑋, 𝑌 ⊆ 𝑃

Module Propulsion: Fuel ⇒ Mass

Data 

Management
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Forest-Based Association Rule Analysis

 Represent list of association rules in a tree data structures

(association rule tree)

 One association rule tree for every goal

Module 1: A ⇒ B
Module 2: B ⇒ E
Module 3: C ⇒ B
Module 4: D ⇒ E

B

A C

E

DB

A C

Goal 1 Goal 2

Association rules Forest representation
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Forest-Based Association Rule Analysis

 Determination of correlation between input parameter and

simulation goal

 Prune sub-tree if no correlation can be found

 Approximate the relationship with splines
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B

A C

E

DB

A C

Goal 1 Goal 2

Forest representation
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Spline-based Sampling

 Relationship defines three-dimensional space

1. Approximate behavior per time frame with one spline

2. Analyze spline for correlation

Parameter value

Simulation time

Goal satisfaction

Spline at 𝑡𝑛

Spline at 𝑡𝑘
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Spline-based Sampling

 Draw samples which minize euclidean distance between

samples in parameter space

 Stop if spline predicts next 𝑛 satisfaction states correctly

Parameter value

Goal satisfaction
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Spline-based Sampling

 Draw samples which minize euclidean distance between

samples in parameter space

 Stop if spline predicts next 𝑛 satisfaction states correctly

Goal satisfaction
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Parameter value



Spline-based Sampling

 Draw samples which minize euclidean distance between

samples in parameter space

 Stop if spline predicts next 𝑛 satisfaction states correctly

Goal satisfaction
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Parameter value



Recursive Correlation Analysis

 Compute correlation coefficient for spline

 If coefficient does not yield correlation, split the spline and

recompute the coefficient

𝑟 =
∑(𝑃 − 𝑃)(𝐺 − 𝐺)

∑ 𝑃 − 𝑃
2

∑ 𝐺 − 𝐺
2

Parameter value (P)

Goal satisfaction (G)
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Recursive Correlation Analysis

 Compute correlation coefficient for spline

 If coefficient does not yield correlation, split the spline and

recompute the coefficient
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𝑟 =
∑(𝑃 − 𝑃)(𝐺 − 𝐺)

∑ 𝑃 − 𝑃
2

∑ 𝐺 − 𝐺
2

Goal satisfaction (G)

Parameter value (P)



Feasible Design Space Approximation

Parameter value

Simulation time

Goal satisfaction

Spline at 𝑡𝑛

Deviation over time for xi
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Feasible Design Space Approximation

 Weighting of spline deviation

 Pareto space

𝛾(𝑥𝑖 , 𝑡𝑖) =
𝑒−𝑘

2
𝛼𝑡𝑖 𝑥𝑖 + …+ 𝑒−𝑔

2
𝛼𝑡𝑚(𝑥𝑖)

𝑚

𝜔𝑝𝑎𝑟𝑒𝑡𝑜 (𝑥𝑖 , 𝑡𝑖) =
∑Φ(|

𝑜
𝑛
−

𝑜
∑𝑓(𝑥𝑖)

⋅ 𝛾(𝑥𝑖 , 𝑡𝑖)|)

𝑘

G
o
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Parameter value

𝑥𝑎 𝑥𝑏 𝑥𝑐 𝑥𝑑

Φ𝛼 = 0,Φ𝛽 = 1Φ𝛼 = 1,Φ𝛽 = 0
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Evaluation

 Performance evaluation of association rule mining step, forest

generation and spline-based sampling

 Two use case studies for quality performance evaluation

 Lotka-Volterra prey predator system

 Interplanetary cruise flight

 Synthetic optimization scenarios

 Gradient descent, simulated annealing, evolutionary algorithm
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Simulation Analysis
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Spline-Based Sampling
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Quality of Optimization Algorithms

Motivation Related Work Our Approach Evaluation Conclusion



Conclusion

 Completely autonomous knowledge discovery process

 Uncovers hidden relationships between simulation input

parameters and simulation goals

 Our technique requires up to 40 % less samples

 Approximates Pareto gradient information for multiobjective

algorithms

 Gradient descent up to a factor of 5

 Simulated annealing up to a factor of 8

 Evolutionary algorithm up to a factor of 12
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Future Work

 Extension of spline-sampling for stochastic simulation

 Integration of gradient information into spline-based objective

function sampling

 Evaluation with standard optimization problems (e.g. SimOpt

library)
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Thank you for your attention

Questions?

Patrick Lange, Rene Weller, Gabriel Zachmann

{lange,weller,zach}@cs.uni-bremen.de
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