Kinetic Bounding Volume
Hierarchies for
Deformable Objects

René Weller
Clausthal University of Technology, Germany
weller@in.tu-clausthal.de

VRCIA 06, June 2006, Hong Kong

Motivation

= Bounding volume hierarchies (BVHs) are widely employed in
many areas of computer science to accelerate geometric queries

= ray-tracing
= occlusion culling

= collision detection

Courtesy GRIS, Tibingen

Introduction

Deformable BVH

= BVHs are constructed in a pre-processing step

= The pre-processed hierarchy becomes invalid when the object
deforms

— The BVH must be rebuilt or updated after deformations

Introduction

Brute Force Update of single BV

Introduction

Max
x 1.0

y 0.9

Min
x 0.3
y 0.4

Frame 2

Problems

= Discrete time sampling
= Many update operations

= Missing changes between queries
= No adequate use of spatial and temporal coherence

= Other approaches:
= Hybrid updates [van den Bergen, 1998]
= Lazy updates [Mezger et al. 2003]
= Restriction of deformation schemes [James and Pai, 2004]
= Intrinsic collision test on the GPU [Wong and Baciu 2005]

= Chromatic decompositions [Govindaraju et al. 2005]

Introduction

Our Approach

= Motion in the physical world is normally continuous

= Changes in the combinatorial structure of the BHVs occur only at
discrete time points

— We store only the combinatorial structure of the BVH and use
an event based approach for updates

Overview

Kinetic Updates

t1

Overview

Event Queue

(t1, Q, R, Max x)

Advantages

= Fewer update operations
= Valid BVHs at every point in time
= Independent of query sampling frequency

= Can handle all kinds of objects

= polygon soups, point clouds, and NURBS models
= Can handle insertions/deletions during run-time

= Can handle all kinds of deformations
= Only a flightplan is required for every vertex

= These flightplans may change during simulation

Overview

Recap: Kinetic Data Structures

= KDS are a framework for designing and analyzing algorithms for
objects in motion [Basch et al. 1997]

= KDS framework leads to event-based algorithms that samples the
state of parts of a system only as often as necessary for a special
task (e.g. a bounding box)

P max.y

| |

| - A

| |

: = \ V Prax x
|

KDS

KDS terminology

= The task is called the attribute
= A KDS consists of certificates
= Certificate failures are called events

= If the attribute changes at the time of an event, the event is
called external, otherwise internal

Pma,x‘,_r

T P P!

I |

: " \ p:/Pmax X
|

X | '

N C\ P K P :
- |

|

KDS

Quality of a KDS

= A KDS is compact, if it requires only little space

= A KDS is responsive if we can update it quickly in case of a
certificate failure

= A KDS is local, if one object is involved in not too many events

= A KDS is efficient, if the overhead of internal events with respect
to external events is reasonable

KDS

Kinetic AABB Tree

= Kinetization of the AABB tree

= Pre-processing: Build the tree by any algorithm suitable for static
AABB trees

= It is only required that the height of the BVH is logarithmic

= Store with every node the indices of those points that determine
the BV

= Initialize the event queue

Kinetic AABB

Kinetic AABB Tree Events

= | eaf Event

/

Event Queue

(t1, Q, R, Max x)

Kinetic AABB

Kinetic AABB Tree Events

= Tree Event

é\\a)/

P @

t1

= Flightplan Update Event

Event Queue

(t1, R, P, Max x)

Kinetic AABB

Max
X R

Simulation Loop

while simulation runs
determine time t of next rendering
e <— min event in event queue
while e.timestamp < t
processEvent(e)
e <— min event in event queue
check for collisions (or cast ray, or ...)

render scene

Kinetic AABB

Event Handling @:’

= | eaf Event

D X P
. & Event Queue

t2

Kinetic AABB

Event Handling

= | eaf Event cont

L

t5

Kinetic AABB

Max

Event Queue
(t5, T, R, Max x)

Analysis] ’

= Theorem 1: The kinetic AABB tree is compact (O(n)), local
(O(log n)), responsive (O(log n)) and efficient.
Furthermore, the kinetic AABB tree is a valid BVH at every

point of time.
X

g

fi

= Theorem 2: Given n vertices, we assume that each pair of
flightplans intersect at most s times.
Then, the total number of events is in nearly O(n log n).

Kinetic AABB

Kinetic Boxtree

= Kinetic AABB tree needs up to six events for every BV

=> The kinetic BoxTree which uses less memory than the kinetic
AABB tree

= Combination of k-d tree and AABB

AABB tree BoxTree

Kinetic BoxTree

3 ~ 4
~
5

a4

m Event Computation

[1,2,3,4,5,6,7,8,9,10,11]

| 1,2,3,4,5,6/ \‘f 7,8,9,10,11]
10, 11

11

10

Kinetic BoxTree

BoxTree Events

splity

split, ()

splity . ‘
6T JeX Jelelele

Analysis Gj’

= Theorem: The kinetic BoxTree is compact, local and efficient. The
responsiveness holds only in the one-dimensional case.
Furthermore, the kinetic BoxTree builds a valid BVH at every point
of time.

split,

splity ()
split, () ()
(OO C

split

Kinetic BoxTree

Experiments

= Results

600
500
400
5300
200

100

T T T T
== kinetic AABB-Events

=== kinetic BoxTree-Events
«++x kinetic AABB-Updates
| kinetic BoxTree-Updates

I

0 2000 4000 6000 f) 10000 12()00 14000 16000
rmno es
30 T T T O T T T
=== kinetic AABB o
25 === kinetic Boxtree -~ -
++++ Bottom-Up o
o 20 — .b.. -
S K
= :
SI5F n
> -~
m K
10 ’:’ -
SF -
J L 1 ket
OO 2000 4000 6000 SOOf)e q 10000 12000 1400() 16000

et 1 0 0 et --q--—-""“‘f

uu&ﬂ“'““”

T ue

‘ll_“_--

"
.....
....... i -

triang

#Events and
#Updates

Experiments

w= Updating time

|8}
o

T T T T T T ..
=== kinetic AABB ‘
25 === kinetic Boxtree “_‘_.-‘ _
=2+ Bottom-Up ‘_.“"
§20_ ‘.“"““‘ n
E ‘l“"‘
T) 15 B ““"‘ N
£
10 -
5 - —
0 R . . i i —
0 50000 100000 150000 200000 250000 300000 350000
triangles
18 T T T T T T
16 | IR R RN ENENNENERNERSEJEJ;] LA A AR R R R R RN ENEEEEE N _
14 |- === kinetic AABB -
P Tl kinetic Boxtree _
é «+++ Bottom-Up
10 .
g 8| -
6 -
4 _
T \ |
0 | 1
0 50 100 250 300 350

150 00
Interpolated I;rames

Experiments

o
L
7]
—
—
—
~—
L
—
e
—
- —
—

triangles

I | I I] PPN
- Kinetic AABB Laentt

[=== Kkinetic Boxtree e .t -

| mEmmnm BOtt(}ITl—LIp s ot a® |
lll----'"-----

o - ———— |

R

| | I | I I

0 50000 100000 150000 200000 250000 300000 350000

Experiments

Conclusions

= Two novel data structures for updating a BVH over deformable
objects fast and efficient

= Efficiency due to event based approach

= Theoretic Analysis:

= Upper bound of nearly O(n log n) for the updates that are required to
keep a BVH valid

= Our kinetic AABB tree and kinetic BoxTree are optimal in number of
updates

= Up to 20 times faster than bottom-up updates in practically
relevant scenarios

End

Future Work

= Use our kinetic Data Structures also for continuous collision
detection

= Utilize our data structures for other kinds of motion
= physically-based simulations

= other animation schemes

= Use our KDS for other applications like ray-tracing or occlusion
culling

End

Acknowledgements

= Gabriel Zachmann, Clausthal University of Technology
= Johannes Mezger, University of Tlibingen
= Stefan Kimmerle, University of Tlibingen

= DFG grant ZA 292/1-1 ("Aktionsplan Informatik")

End

