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Motivation

= Bounding volume hierarchies (BVHs) are widely employed in
many areas of computer science to accelerate geometric queries

= ray-tracing
= occlusion culling

= collision detection

Courtesy GRIS, Tibingen

Introduction



Deformable BVH

= BVHs are constructed in a pre-processing step

= The pre-processed hierarchy becomes invalid when the object
deforms

— The BVH must be rebuilt or updated after deformations
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Brute Force Update of single BV
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Max
x 1.0

y 0.9

Min
x 0.3
y 0.4

Frame 2



Problems

= Discrete time sampling
= Many update operations

= Missing changes between queries
= No adequate use of spatial and temporal coherence

= Other approaches:
= Hybrid updates [van den Bergen, 1998]
= Lazy updates [Mezger et al. 2003]
= Restriction of deformation schemes [James and Pai, 2004]
= Intrinsic collision test on the GPU [Wong and Baciu 2005]

= Chromatic decompositions [Govindaraju et al. 2005]
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Our Approach

= Motion in the physical world is normally continuous

= Changes in the combinatorial structure of the BHVs occur only at
discrete time points

— We store only the combinatorial structure of the BVH and use
an event based approach for updates
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Kinetic Updates
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Advantages

= Fewer update operations
= Valid BVHs at every point in time
= Independent of query sampling frequency

= Can handle all kinds of objects

= polygon soups, point clouds, and NURBS models
= Can handle insertions/deletions during run-time

= Can handle all kinds of deformations
= Only a flightplan is required for every vertex

= These flightplans may change during simulation
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Recap: Kinetic Data Structures

= KDS are a framework for designing and analyzing algorithms for
objects in motion [Basch et al. 1997]

= KDS framework leads to event-based algorithms that samples the
state of parts of a system only as often as necessary for a special
task (e.g. a bounding box)
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KDS terminology

= The task is called the attribute
= A KDS consists of certificates
= Certificate failures are called events

= If the attribute changes at the time of an event, the event is
called external, otherwise internal
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Quality of a KDS

= A KDS is compact, if it requires only little space

= A KDS is responsive if we can update it quickly in case of a
certificate failure

= A KDS is local, if one object is involved in not too many events

= A KDS is efficient, if the overhead of internal events with respect
to external events is reasonable

KDS



Kinetic AABB Tree

= Kinetization of the AABB tree

= Pre-processing: Build the tree by any algorithm suitable for static
AABB trees

= It is only required that the height of the BVH is logarithmic

= Store with every node the indices of those points that determine
the BV

= Initialize the event queue

Kinetic AABB



Kinetic AABB Tree Events

= | eaf Event

/

Event Queue

(t1, Q, R, Max x)

Kinetic AABB



Kinetic AABB Tree Events

= Tree Event
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Simulation Loop

while simulation runs
determine time t of next rendering
e <— min event in event queue
while e.timestamp < t
processEvent(e)
e <— min event in event queue
check for collisions (or cast ray, or ...)

render scene

Kinetic AABB



Event Handling @:’

= | eaf Event
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Event Handling

= | eaf Event cont
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Analysis ] ’

= Theorem 1: The kinetic AABB tree is compact ( O(n) ), local
( O(log n) ), responsive ( O(log n) ) and efficient.
Furthermore, the kinetic AABB tree is a valid BVH at every

point of time.
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= Theorem 2: Given n vertices, we assume that each pair of
flightplans intersect at most s times.
Then, the total number of events is in nearly O(n log n).
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Kinetic Boxtree

= Kinetic AABB tree needs up to six events for every BV

=> The kinetic BoxTree which uses less memory than the kinetic
AABB tree

= Combination of k-d tree and AABB

AABB tree BoxTree

Kinetic BoxTree
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BoxTree Events
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Analysis Gj’

= Theorem: The kinetic BoxTree is compact, local and efficient. The
responsiveness holds only in the one-dimensional case.
Furthermore, the kinetic BoxTree builds a valid BVH at every point
of time.
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Experiments



= Results
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w= Updating time
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Conclusions

= Two novel data structures for updating a BVH over deformable
objects fast and efficient

= Efficiency due to event based approach

= Theoretic Analysis:

= Upper bound of nearly O(n log n) for the updates that are required to
keep a BVH valid

= Our kinetic AABB tree and kinetic BoxTree are optimal in number of
updates

= Up to 20 times faster than bottom-up updates in practically
relevant scenarios
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Future Work

= Use our kinetic Data Structures also for continuous collision
detection

= Utilize our data structures for other kinds of motion
= physically-based simulations

= other animation schemes

= Use our KDS for other applications like ray-tracing or occlusion
culling
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