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Abstract
Ordinary bounding volume hierarchy (BVH) construction algorithms create BVHs that approximate the boundary
of the objects. In this paper, we present a BVH construction that instead approximates the volume of the objects
with successively finer levels. It is based on Batch Neural Gas (BNG), a clustering algorithm that is known from
machine learning. Additionally, we present a novel massively parallel version of this BNG-based hierarchy con-
struction that runs completely on the GPU. It reduces the theoretical complexity of the sequential algorithm from
O(n logn) to O(log2 n) and also our CUDA implementation outperforms the CPU version significantly in practice.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling —Object hierarchies I.5.3 [Pattern Recognition]: Clustering—Algorithms

1. Introduction

Bounding volume hierarchies (BVHs) are a widely used data
structure to accelerate intersection computations in com-
puter graphics and related fields. They have been success-
fully applied to ray tracing, collision detection, and visibility
culling, to name but a few.

The basic idea is very simple: geometric primitives are
wrapped into simple shapes called bounding volumes (BVs)
that allow very fast intersection tests. Common BVs are axis
aligned bounding boxes (AABB), spheres, discrete oriented
polytopes (k-DOP) or oriented bounding boxes (OBB). In a
bounding volume hierarchy, we group these bounding vol-
umes into small sets and enclose them within larger bound-
ing volumes recursively. This generates a tree data structure
with a single large BV at the root position that encloses all
geometric primitives. Obviously, the geometric primitives
are the leaves of such a BVH.

When we perform an intersection test, we start at the root
node of the BVH and, if it passes the test, continue to re-
cursively traverse its children. If an intersection test fails at
some node, we can simply skip the whole underlying branch
because the intersection test will also fail for all children.

In order to guarantee a high culling efficiency, the BVH
has to fulfill several, quality criteria: it should tightly fit the
underlying geometry, provide fast intersection tests, be in-
variant undergoing rigid motion, not use too much memory,

the inner nodes should not overlap heavily, and it should be
able to be built automatically and fast. Unfortunately, these
factors are partly contradictory. For example, spheres offer
very fast overlap and distance tests, they are rotationally in-
variant and they can be stored very memory efficiently, but
they poorly fit flat geometries. AABBs also offer fast inter-
section tests, but they need to be realigned after rotations.
Consequently, choosing the right BVHs is always a com-
promise and depends on the scenario. There does not exist
a best BVH for all circumstances. Especially, the quality of
the partitioning usually has a significant influence on the per-
formance during queries.

In computer graphics objects are usually represented only
by their surface, e. g. by a polygonal mesh or as an im-
plicit NURBS surface. Consequently, most work on BVHs
has been spent on these object representations. Recently,
Weller and Zachmann [WZ09] presented a new volumetric
method to represent 3D object by a sphere packing. The ba-
sic idea is to fill a typical 3D surface representation from the
inside with a set of non-overlapping spheres with different
radii. These inside sphere packings allow the computation of
the penetration volume as penetration measure for collision
queries. According to Fisher and Lin [FL01, Sec. 5.1], this
penetration measure is “the most complicated yet accurate
method” to define the extent of intersection.

However, constructing a BVH of such sphere packings
is challenging, because traditional methods that are opti-
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Figure 1: Left: a dense polydisperse sphere packing representation of a dragon model. Right: in a wrapped hierarchy, the parent
sphere (blue) covers all its leaf nodes (red), but not its direct children (green).

mized for surface representations are not automatically also
suited for a volumetric BVH. For instance, BVH construc-
tion methods that were designed for classical outer sphere
trees, like the medial axis approach [BO04, Hub95] work
well if the spheres constitute a covering of the object and
have very similar size, but in our scenario we use disjoint
inner spheres that exhibit a large variation in size. Other ap-
proaches based on the k-center problem work only for sets
of points and can be hardly extended to spheres.

In this paper, we extend a method that is previously known
from machine learning, the Batch Neural Gas (BNG) cluster-
ing, for the construction of BVHs on sphere packings. In its
pure form, BNG partitions a set of data points into a pre-
defined number of clusters by minimizing the mean squared
Euclidean distance of each data point to its nearest center.
We adopt an extension called magnification control that en-
ables us to take also the spheres’ volume into account.

Basically, BNG adds a single point, a so called prototype,
for each cluster to the sphere packing and moves them iter-
atively until some convergence criterion is met. The move-
ment depends on the distance of the prototypes to all data
points. Unfortunately, this requires a lot of convergence steps
and hence, is relatively slow. Moreover, we have to start such
a time consuming step for each BV in the BVH individually.
Even if the construction of the BVH is a pre-processing step
that has to be done only once, it should not be too slow. For
instance, if we want to add a new object to an interactive
real-time simulation we usually do not want to wait for min-
utes until the BVH for this object has been constructed.

In order to overcome this limitation, we present a novel
massively parallel version of BNG that is especially opti-
mized for the construction of BVHs. Our new algorithm runs
completely on the GPU and in general, it does not require
any time consuming copy operations between CPU and GPU
memory during the whole BVH construction. Moreover, it
reduces the theoretic complexity of the hierarchy construc-
tion of O(n logn) for the CPU version to O(log2 n) using

only O(n) processors. Our novel parallel approach is easy to
implement and robust against the start positions of the proto-
types. Our CUDA implementation shows a significant speed
up compared to the CPU version. Moreover, our results show
that the BNG-based BVHs perform much better than BVHs
that are constructed using simple heuristics for the sphere
partitioning.

2. Previous Work

Wrapping objects in BVs and arranging the BVs into a tree
hierarchy is commonly used to accelerate intersection com-
putations in many fields of computer science. Because of
their efficiency, BVHs have been extensively researched in
the past and they are widely adopted in the area of computer
graphics.

Gottschalk, Lin, and Manocha [GLM96] presented a new
construction method for the oriented bounding box-tree
(OBB-tree) hierarchy. But the only optimal solution for
OBB computation is O(n3) and very hard to implement
[O’R85]. Lauterbach et al. [LGS∗09] used spatial Morton
codes to reduce the BVH construction problem to a simple
sorting problem, called Linear Bounding Volume Hierarchy
(LBVH).

For the case that traversal cost is most important and
construction cost is relatively non-relevant, using a surface
area heuristic (SAP) as splitting criterion can be well suited.
Lauterbach et al. [LGS∗09] have recently demonstrated that
building SAH BVHs on modern GPUs is possible, however
their build times are still significantly higher than those for
CPUs [Wal07], but traversal of the BVH is more efficient
using GPUs. All these approaches do not consider the vol-
ume of the underlaying object, they only focus on the sur-
face of an object, but this is entirely insufficient for vol-
ume based approaches, like e. g. inner sphere trees [WZ09]
or tetrahedral meshes [THM∗03]. Therefore, a different ap-
proach to create a hierarchy for volumetric objects is needed.
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Figure 2: This figure shows the results of our hierarchy building algorithm based on Batch Neural Gas clustering with magni-
fication control. All of those inner spheres that share the same color are assigned to the same bounding sphere. The left image
shows the clustering result of the root sphere, the right images the partitioning of its four children.

A common approach for fitting points into classification
is clustering. Since iterative improvement based partition-
ing approaches [KL70, FM82, WC89] do not perform very
well on large input data sets, many different clustering ap-
proaches have been developed over the last years. The most
common one, named k-means [M∗67, Web03, DHS12], is a
well-established way of clustering data. Pelleg and Moore
[PM99] used a kd-tree to improve the performance of the
k-means clustering approach. Weber and Zezula [WZ97]
showed that bounding trees do not scale well while the di-
mension increases.

In the last few years GPU have been the subject of atten-
tion and therefore, GPU-based clustering approaches have
been intensively investigated by researcher. Hall and Hart
[HH04] used the fragment shader to fetch input data and
cluster center for metric evaluation. One downside of this
approach was the restriction in dimensionality due to texture
memory limitation. Che et al. [CBM∗08] and Zechner and
Granitzer [ZG09] moved some computation steps on GPU,
where every GPU thread is associated with a data point se-
quentially evaluating its label. The evaluation of determined
mean values was done completely on CPU, so many mem-
ory transfer operations are required between CPU and GPU.

Hong-Tao et al. [HTLlDt∗09] developed an approach
where they further moved the new center evaluation par-
tially on the GPU. The rearrangement of input vectors as
per labels, however, was further done on CPU. Takizawa
and Kobayashi [TK06] presented an effective parallel im-
plementation scheme of k-means clustering. For the subdivi-
sion of a large-scale k-means clustering task their approach
used a divide-and-conquer procedure. Another full CUDA
based implementation has been developed by Wu, Zhang,
and Hsu [WZH09] and Farivar et al. [FRCC08].

K-means clustering directly tries to minimize the quan-

tization error [BB95]. However, its update scheme works
only on a local part of the data set and therefore, it easily
gets stuck in local optima. Another algorithm widely used
for vector quantization is Kohonen [Koh82] Self Organizing
Map (SOM) and the Neural Gas (NG) algorithm described
by Martinetz, Schulten, et al. [MS∗91]. There exist two clas-
sifications for different optimization schemes: online vari-
ants and batch variants.

Batch approaches are much faster, since only one adap-
tation is necessary in each cycle and this approaches con-
verges after fewer steps. Nevertheless, Fort, Letremy, and
Cottrell [FLC02] showed that topological order of SOM ap-
proach can be destroyed without a good initialization. Cot-
trell et al. [CHHV05] introduced a batch variant of the Neu-
ral Gas clustering algorithm (BNG). Their approach opti-
mized the same cost function as the standard Neural Gas
algorithm but converges much faster. In Section 3.1 we give
a brief overview of the BNG algorithm and our novel GPU-
based implementation for BVH construction.

3. Batch Neural Gas-based Hierarchy Creation

As described in the introduction, our objects are represented
by a volumetric polydisperse sphere packing. This means,
all spheres are located completely inside the object, and they
do not overlap each other. However, the radii of the spheres
varies. This allows us to approximate the object’s volume
to any required accuracy by using space-filling sphere pack-
ings.

Based on the sphere packing, we create an inner bounding
volume hierarchy where the inner spheres are the leaves. In
order to construct our hierarchy we use a top-down wrapped
hierarchy approach according to the notion of Agarwal et
al. [AGN∗04], where inner nodes are tight BVs for all their
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Figure 3: The top array stores the indices of the prototype to which the sphere in the array below has been assigned after the
initial BNG clustering. In a first step, we sort the spheres with respect to their prototype index (the two lower arrays). Note, that
each sphere is assigned to exactly one prototype.

leaves, but they do not necessarily bound their direct chil-
dren (see Figure 1). Compared to layered hierarchies, the
big advantage is that the inner BVs are tighter. We use a top-
down approach to create our hierarchy, i.e., we start at the
root node that covers all inner spheres and divide these into
several subsets.

3.1. Batch Neural Gas Recap

So we decided to use the Batch Neural Gas clustering al-
gorithm (BNG) known from machine learning [CHHV06].
BNG is a very robust clustering algorithm which can be for-
mulated as stochastic gradient descent with a cost function
closely connected to quantization error. Like k-means, the
cost function minimizes the mean squared euclidean dis-
tance of each data point to its nearest center. But unlike
k-means, BNG exhibits very robust behavior with respect
to the initial cluster center positions (the prototypes): they
can be chosen arbitrarily without affecting the convergence.
Moreover, BNG can be extended to allow the specification
of the importance of each data point; below, we will describe
how this can be used to increase the quality of our BVH.

In the following we will give a quick recap of the basic
Batch Neural Gas and then describe our extensions and ap-
plication to building the inner sphere tree.

Given points x j ∈ Rd , j = 0, . . . ,m and prototypes wi ∈
Rd , i = 0, . . . ,n initialized randomly, we set the rank for ev-
ery prototype wi with respect to every data point x j as

ki j :=
∣∣{wk : d(x j,wk)< d(x j,wi)}

∣∣ ∈ {0, . . . ,n} (1)

In other words, we sort the prototypes with respect to every
data point. After the computation of the ranks, we compute
the new positions for the prototypes:

wi :=
∑

m
j=0 hλ(ki j)x j

∑
m
j=0 hλ(ki j)

(2)

These two steps are repeated until a stop criterion is met. In
the original publication by Cottrell et al. [CHHV06], a fixed
number of iterations is proposed. Indeed, after a certain num-
ber of iteration steps, which depends on the number of data

points, there is no further improvement. We propose to use
an adaptive version and stop the iteration if the movement
of the prototypes is smaller than some ε. In our examples,
we chose ε≈ 10−5×BoundingBoxSize of the object, with-
out any differences in the hierarchy compared to the non-
adaptive, exhaustive approach. This improvement speeds up
the creation of the hierarchy significantly.

The convergence rate is controlled by a monotonically de-
creasing function hλ(k) > 0 that decreases with the num-
ber of iterations t. We use the function proposed in the
original publication [CHHV06]: hλ(k) = e−

k
λ with initial

value λ0 = n
2 , and reduction λ(t) = λ0

(
0.01
λ0

) t
tmax , where

tmax is the maximum number of iterations. These values have
been taken according to Martinetz, Berkovich, and Schul-
ten [MBS93].

Obviously, the number of prototypes defines the arity of
the tree. If it is too big, the resulting trees are very inefficient.
On the other hand, if it is too small, the trees become very
deep and there exist a lot of levels with big spheres that do
not approximate the object very well. Experiments with our
data structure have shown that a branching factor of 4 pro-
duces the best results. Additionally, this has the benefit that
we can use the full capacity of SIMD units in modern CPUs
during the traversal.

3.1.1. Magnification Control

So far, the BNG only utilizes the location of the centers of
the spheres. In our experience this already produces reason-
able results for the query performance. However, it does not
yet take the extent of the spheres into account. This is, be-
cause Neural Gas uses only the number of data points and
not their importance. As a consequence, the prototypes tend
to avoid regions that are covered with a very large sphere,
i.e., centers of big spheres are treated as outliers and they are
thus placed on very deep levels in the hierarchy. However, it
is better to place big spheres at higher levels of the hierarchy
in order to get early lower bounds during distance traversal.

Therefore, we use an extended version of the classical
Batch Neural Gas that also takes the size of the spheres
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Figure 4: An example for the second level of the hierarchical BNG. According to Figure 3, each sphere has been assigned to a
prototype. We insert 16 new prototypes, w1,1, · · · ,w4,4, 4 for each prototype w1, · · · ,w4 from the previous level and compute the
values that are required by BNG, e. g. hλ(ki j)v(x j). Please note that we do not have to allocate new memory or copy any values
from CPU to GPU. We can simply re-use the memory from the previous level because each sphere was assigned to exactly one
prototype. Consequently, we get a constant memory consumption for each level.
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Figure 5: In order to compute the new position of the prototypes for the next iteration, we have to determine ∑hλ(ki j)v(x j)x j.
Therefore, we compute the prefix sum (brown array) for each of the four prototype arrays from Figure 4. The differences
between the values at the borders directly deliver us the individual sum for each prototype.

into account. Our extension is based on an idea of Ham-
mer, Hasenfuss, and Villmann [HHV06], where magnifica-
tion control is introduced. The idea is to add weighting fac-
tors in order to “artificially” increase the density of the space
in some areas.

With weighting factors v(x j), Equation 2 becomes

wi :=
∑

m
j=0 hλ(ki j)v(x j)x j

∑
m
j=0 hλ(ki j)v(x j)

(3)

Where v(x j) identifies a control parameter to take care
of the importance. In Hammer, Hasenfuss, and Villmann
[HHV06], a function of density is used to control the mag-
nification. In our scenario we already know the density, be-
cause our spheres are disjoint. Thus, we can directly use the
volumes of our spheres to let v(x j) =

4
3 πr3.

3.2. Batch Neural Gas Hierarchy Construction

Summing up the findings from before, the hierarchy cre-
ation algorithm can be described as follows: we first com-
pute a bounding sphere for all inner spheres (at the leaves),
which becomes the root node of the hierarchy. Therefore,
we use the fast and stable smallest enclosing sphere algo-
rithm proposed in Gärtner [Gär99]. Then, we divide the set
of inner spheres into subsets in order to create the children.
To do that, we apply the extended version of Batch Neural
Gas with magnification control mentioned above. We repeat
this scheme recursively (see Figure 2 for some clustering re-
sults).

3.2.1. Parallel Hierarchical Batch Neural Gas

The Batch Neural Gas algorithm produces a very good par-
titioning of the inner spheres, but as a drawback, it is very
slow. Actually, we have to execute O(n) BNG calls – one for
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Figure 6: The objects we used in our timings: a cow, a human brain, a pig and a statue.
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Figure 7: Left: CPU and GPU time for the BVH construction of cow model with different sphere packing densities. Right: the
same for the brain model.

each hierarchy sphere – where n denotes the number of in-
ner spheres. In case of a balanced tree with height O(logn)
we have an overall running-time of O(n logn), but with a
relatively high hidden constant factor that results from the
number of iteration steps.

However, BNG in its pure form, but also the hierarchical
BNG calls of our BVH creation, are perfectly suited for par-
allelization. Assuming O(n) processors we are able to reduce
the asymptotic running-time to O(log2 n). In the following
we will sketch the details of this parallel hierarchical BNG
implementation using the GPU.

Obviously, on the first level of our hierarchy, the ordering
ki j and consequently also hλ(ki j)v(x j)x j can be computed
independently for each sphere x j. Summing up all those val-
ues can be implemented in parallel too, by using a parallel
scan algorithm [SHG08]. The parallel assignment of spheres
to prototypes is straightforward too: we simply have to com-
pute the distances of each sphere to the prototypes. Please
note, that each sphere is assigned to exactly one prototype.

In the next level of the BVH creation, we have to add 4
new prototypes for each prototype from the previous level
(in case of a branching factor of 4). However, triggering an
own parallel process for each sub-set of spheres would shoot
down the advantages of parallel computing, especially in the

deeper hierarchy levels. Therefore, we decided to chose an-
other way. In the following we will describe its technical
details.

First, we sort the spheres with respect to the prototype that
the spheres were assigned to (see Figure 3). This can be done
in parallel by using a parallel sorting algorithm [SHG09].
This technical detail allows us later to use fast parallel prefix-
sum computations. However, after the sorting we virtually
insert 4 new prototypes for each prototype from the previous
hierarchy level. The fact that each sphere has been assigned
to exactly one prototype in the previous level allows us to
compute the values that are required for BNG (e. g. ki j) in
parallel for each sphere. We simply have to ensure that these
values are computed for the right new prototypes (see Fig-
ure 4).

Finally, we have to sum up the individual values to get
the new position of the prototypes; this means we have
to compute ∑

m
j=0 hλ(ki j)v(x j)x j and ∑

m
j=0 hλ(ki j)v(x j). Sur-

prisingly, we can directly re-use the parallel prefix-sum from
above [SHG08], even if we now need the sums for each new
prototype individually: we simply have to subtract the values
at the borders of our sorted prototype array (see Figure 5).

Algorithm 1 summarizes our complete parallel hierarchi-
cal BNG implementation.
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Figure 8: Left: CPU and GPU time for the BVH construction of pig model with different sphere packing densities. Right: the
same for the statue model.

Algorithm 1: Parallel hierarchical BNG

while Not on inner sphere level do
iteration = 0
while iteration<maxNumberIterations do

iteration++
In parallel Sort prototype array
In parallel forall the Spheres do

compute hλ(ki j)v(x j)x j
and hλ(ki j)v(x j)

In parallel Compute prefix sum
In parallel forall the Prototypes in level do

Compute new position
read back prototype positions

The prefix sum and the sorting of the prototypes for n
inner spheres can be computed in parallel using O(n) pro-
cessors in O(logn). Basically, both algorithms are based on
an implicit balanced binary tree structure (see [SHG09] and
[SHG08] for more details). The “per sphere” steps of Al-
gorithm 1 have a complexity of O(1), obviously. If the tree
is balanced, the outer while-loop is called O(logn) times.
Overall, we get a parallel time complexity of O(log2 n). The
memory consumption is O(n).

4. Results

We implemented our algorithms using C++ for the CPU ver-
sion and CUDA for the GPU version. All tests were per-
formed on an Intel I7 CPU with 8GB main memory and a
NVIDIA Gefore GTX 780 GPU with 3 GB of memory.

We used complex 3D models with very different shapes
in our timings: in particular, two animal models, a detailed
model of the human brain and a statue (See Figure 6). Ad-

ditionally, we filled all models with different numbers of
spheres ranging from 2k up to 100k inner spheres.

Our results show, that our novel hierarchical BNG hierar-
chy creation algorithms outperforms the CPU significantly.
More precisely, we get an acceleration of a factor of 15 for
all objects (see Figure 7 and 8). Please note, that our al-
gorithm is not optimized yet, i.e. we do not use advanced
CUDA acceleration techniques like shared memory. In prac-
tice it is essential that there is not too much traffic between
the memories of the CPU and the GPU. In our algorithm
there is almost no traffic required. In our current implemen-
tation, we only have to save the positions of the prototypes
from the last iteration in the outer loop of Algorithm 1. How-
ever, this is also not really necessary. In the future, we plan to
move the smallest enclosing sphere computation to the GPU
too. Then, we only have to read back the whole hierarchy
once. We only have to allocate memory for the prototypes
once. This memory can be re-used for all iterations.

We also tested the performance of our BNG-based hierar-
chies for collision detection queries. To do that, we imple-
mented two simple competing partitioning heutistics: First,
we greedily choose the four biggest spheres and partition the
smaller spheres to the closest of these large elements. Sec-
ond, we sorted the spheres with respect to the coordinate axis
and choose the two axis with the largest extend. Again, we
assigned the intermediate spheres to the closest of the four
extreme spheres.

In our two test scenes (See Figure 9) we used penetration
volume queries. All tests were run on an Intel I7 processor.
The collision query algorithm uses hand optimized SIMD
code. The results show that the BNG hierarchies performed
best in all our query test runs. Actually, they are more than
a factor of 4 faster than the greedy choice of outer spheres
(See Figure 10). Surprisingly, the simple greedy choice of
biggest spheres performs well, but it is still 20% slower than
our BNG hierarchies.
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Figure 9: The test scenes for collision detection queries. Left: cow and pig. Right: pig and statue.
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Figure 10: Left: Average time for collision detection queries in the pig and cow scene. Right: the same for the pig and statue
scene.

5. Conclusions and Future Work

In this paper, we proposed a partitioning method for the
construction of bounding volume hierarchies for volumet-
ric object representations that is based on the Batch Neu-
ral Gas clustering known usually from machine learning.
Our approach considers the object’s volume instead of re-
stricting the partitioning only to the surface, like most other
algorithms do. Moreover, we presented a new parallel ver-
sion of the BNG-based algorithm. It reduces the theoret-
ical complexity from O(n logn) to O(log2 n) using O(n)
processors. Additionally, we implemented our new BVH
partitioning construction algorithm using CUDA. Our new
robust massively-parallel implementation outperforms the
CPU version by a factor of 15. During runtime, we recog-
nized a speed-up of up to 4 for collision detection queries
compared to simpler partitioning heuristics.

Our novel approach also opens up several avenues for
future work. In the previous section we already mentioned
the planned parallel implementation of the minimum enclos-
ing sphere computation. However, it would be also interest-
ing to apply our algorithm to other volumetric object repre-
sentations than sphere packings, e. g. tetrahedra or ellipses.
This could improve the quality of the volume covering be-

cause spheres do not fit well into some objects, especially
if they have many sharp corners or thin ridges. Another op-
tion could be the investigation of our clustering-based BVH
construction for classical outer BVHs. Currently, most im-
plementations of classic BVHs use traditionally a branch-
ing factor of two. Due to recent developments in CPU tech-
nologies like SSE and AVX, higher branching factors could
accelerate queries significantly. However, in this case, also
more sophisticated partitioning techniques for the BVH con-
struction are required because traditional heuristics for bi-
nary trees may not work anymore. Finally, we would like
to explore other uses of inner bounding volume hierarchies,
such as ray tracing or occlusion culling. Note that the type of
bounding volume chosen for the “inner hierarchy” probably
depends on its use.
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